

h95 in GM

HiggsDays in Santander

September 10th 2024

Thomas Biekötter

h95 in GM,2HDM,NMSSM, $\mu\nu$ SSM,S2HDM,MRSSM,...

HiggsDays in Santander

September 10th 2024

Thomas Biekötter

The SM Higgs sector

Minimal parametrization of EW symmetry breaking

Predictions:

- \rightarrow One fundamental scalar particle
- ightarrow Couplings $\sim m_f$ or m_V^2
- \rightarrow No CP violation in Higgs potential

[CMS, 2207.00043]

Any modifications from these predictions \rightarrow BSM physics

h125 after Run 2

"C'est même des hypothèses simples qu'il faut le plus se défier, parce que ce sont celles qui ont le plus de chances de passer inaperçues." - Henri Poincaré **LHC Run 2:** $\sigma \times BR$ normalized to SM prediction $\gamma\gamma$ ZZ^* WW^* H $\tau^+\tau^-$ ATLAS CMS $b\bar{b}$ avg NEW 0.51.0 0.0 0.5 1.0 1.5 0 2 0 2 2 0 9 VBF WH \mathbf{ZH} VH ggH ttH(+tH)

https://gitlab.com/thomas.biekoetter/h125summaryplot

Thomas Biekötter

HiggsDays in Santander

h95 after Run 2

Thomas Biekötter

HiggsDays in Santander

5 / 39

h95 after Run 2

CMS: low-mass $\gamma\gamma$

- Refined analysis regarding $Z \rightarrow e^+e^-$ background

- The excess from Run 1 and 1st-year Run 2 persists!
- $2.9/1.3\sigma$ local/global significance, but signal strength reduced compared to previous result

CMS: low-mass $\gamma\gamma$

- Refined analysis regarding $Z \rightarrow e^+e^-$ background
- The excess from Run 1 and 1st-year Run 2 persists!
- $2.9/1.3\sigma$ local/global significance, but signal strength reduced compared to previous result

CMS: low-mass $\gamma\gamma$

- Refined analysis regarding $Z \rightarrow e^+e^-$ background
- The excess from Run 1 and 1st-year Run 2 persists!
- $2.9/1.3\sigma$ local/global significance, but signal strength reduced compared to previous result

ATLAS: low-mass $\gamma\gamma$

2306.03889]

[ATLAS-CONF-2023-035]

Local 1.7 σ excess at 95 GeV

Local 1.7 σ excess at 95 GeV

ATLAS+CMS: low-mass $\gamma\gamma$

 $\mu_{\gamma\gamma}^{\rm CMS+ATLAS} = 0.24^{+0.09}_{-0.08}$

Theory:

If this is real, what would we learn about the underlying physics and its implications for phenomena beyond the Standard Model?

Experiment:

How to confirm or exclude? How to measure its couplings?

ATLAS+CMS: low-mass $\gamma\gamma$

 $\mu_{\infty}^{\text{CMS+ATLAS}} = 0.24^{+0.09}_{-0.08}$ [CMS-HIG-17-013] 19.7(35.9) fb^{-1} at 8(13) TeV 0.8 2.8σ local signif. 0.7[CMS-HIG-20-002] 0.6 132.2 fb⁻¹ at 13 TeV () } } 2.9σ local signif. 0.5 $\mu(pp \rightarrow h_{95}$ [2306.03889]TB. Heinemever. 0 Weiglein 0.3 0.2[CMS-HIG-14-037] 0.1 19.7 fb⁻¹ at 8 TeV $140 \text{ fb}^{-1} \text{ at } 13 \text{ TeV}$ 2.0σ local signif. 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2016 Vear

If one only considers the diphoton excess, the only certain coupling is the $h_{95}t\bar{t}$ -coupling

Or extra quarks, but difficult (impossible?) to reconcile with h_{125} signal rates

h95 after Run 2

h95 after Run 2

From the "Higgs-hunter perspective" $H\to \tau^+\tau^-$ would be something you search for first So far no low-mass 13 TeV ATLAS result

CMS: low-mass $\tau^+\tau^-$

- Broad excess compatible with a mass of 95 GeV
- Most significant at 100 GeV: $3.1/2.7~\sigma$ local/global
- Significance at 95 GeV: $2.6/2.3~\sigma$ local/global

CMS: low-mass $\tau^+\tau^-$

- Broad excess compatible with a mass of 95 GeV
- Most significant at 100 GeV: $3.1/2.7~\sigma$ local/global
- Significance at 95 GeV: $2.6/2.3~\sigma$ local/global

CMS: low-mass $\tau^+\tau^-$

The ditau excess requires a $h_{95} au^+ au^-$ -coupling

- Broad excess compatible with a mass of 95 GeV
- Most significant at 100 GeV: $3.1/2.7~\sigma$ local/global
- Significance at 95 GeV: $2.6/2.3~\sigma$ local/global

LEP: $e^+e^- \rightarrow Zh \rightarrow Zbb$

LEP combination shows local 2 σ excess at 95 GeV: $\mu_{bb}^{\rm LEP}=0.1\pm0.05$ [Cao et al.,1612.08522]

LEP: $e^+e^- \rightarrow Zh \rightarrow Zbb$

LEP combination shows local 2 σ excess at 95 GeV: $\mu_{bb}^{\text{LEP}} = 0.10 \pm 0.05$ [Cao et al.,1612.08522]

Two b or not two b?

Recent paper claims that signal hypothesis is excluded by 1999–2000 data alone [P. Janot, 2407.10948].

A similar, though less quantitative, statement had already been made by the LEP experiments and the LEP Higgs working group in Ref. [52]: "In the 189 GeV data, an excess had been observed [...] compatible with the dominant $e^+e^- \rightarrow ZZ$ background. [...] There is no evidence for a systematic effect at threshold in the data collected above 189 GeV.". [P. Janot, 2407.10948]

It is worth reading what was left out:

In the 189 GeV data, an excess at m = 97 GeV has indeed been observed [25] (see the large negative value of $-2 \ln Q$ close to the signal+background prediction) which was due mainly to small excesses in ALEPH and OPAL data compatible with $e^+e^- \rightarrow ZZ$, the dominant background in the vicinity of that mass. This excess still has a significance of about two standard deviations when LEP data from all energies are combined, and one cannot exclude a physics interpretation beyond the SM (e.g. MSSM with several neutral Higgs bosons). However, there is no evidence for a systematic effect at threshold in the data collected at the other energies below 206 GeV.

[LEP, hep-ex/0107029]

Two b or not two b?

Figure 11: Behaviour of $-2\ln Q$ in subsets collected at different c.m. energies. In such plot, the filt curve above the observed behaviour, the dashed/dotted lines show the expected behaviour for background/signal-background, and the vertical line indicates the test-mass $m = E_{m_m} - M_Z$ GeV, just at the kinematic limit. (The subset babled 260 GeV has very low statistics.) [4 Sept 2023]

2

[Slide by P. Janot, CCT Meeting 2023]

Two b or not two b?

[Slide by P. Janot, CCT Meeting 2023]

h95 after Run 2

CMS: tth with $h \rightarrow \tau^+ \tau^-$

 $\Rightarrow \text{ For scalar: } \mu_{\tau\tau} \lesssim 0.5 \Rightarrow \text{ Excludes the } \tau^+ \tau^- \text{ excess at about } 2\sigma$ For pseudoscalar: $\mu_{\tau\tau} \lesssim 4.0 \Rightarrow \text{ No constraints}$

Authors	Model	arXiv	Excesses	Comments
Cao, Guo, He et al.	nNMSSM	1612.08522	$bb + \gamma\gamma$	
Fox, Weiner	2HDM	1710.07649	$bb + (\gamma \gamma)$	
Haisch, Malinauskas	2HDM	1712.06599	$bb + (\gamma\gamma)$	
TB, Heinemeyer, Muñoz	μu SSM	1712.07475	$bb + \gamma\gamma$	EW seesaw
Liu, Liu, Wagner, Wang	$U(1)_{L_{\mu}-L_{\tau}}$	1805.01476	$bb + \gamma\gamma$	B-anomalies
Domingo, Heinemeyer, Paßehr, Weiglein	NMSSM	1807.06322	$bb + \gamma\gamma$	
Hollik, Liebler, Moortgat-Pick et al.	$\mu NMSSM$	1809.07371	$bb + \gamma\gamma$	Inflation
TB, Chakraborti, Heinemeyer	N2HDM	1903.11661	$bb + \gamma\gamma$	
Cline, Toma	pNG + squarks	1906.02175	$bb + \gamma\gamma$	DM
Choi, Hui Im, Sik Jeong et al.	gNMSSM	1906.03389	$bb + \gamma\gamma$	
Cao, Jia, Yue et al.	nNMSSM	1908.07206	$bb + \gamma\gamma$	Type-I seesaw
Aguilar-Saavedra, Joaquim	$SM + U(1)_{Y'}$	2002.07697	$bb + \gamma\gamma$	
TB, Olea-Romacho	S2HDM	2108.10864	$bb + \gamma\gamma$	DM, GC excess
TB, Grohsjean, Heinemeyer et al.	NMSSM	2109.01128	$\gamma\gamma$	400 GeV excess
Heinemeyer, Lika, Moortgat-Pick et al.	2HDM+s	2112.11958	$bb + \gamma\gamma$	
TB, Heinemeyer, Weiglein	N2HDM	2203.13180	$bb + (au au) + \gamma\gamma$	
TB, Heinemeyer, Weiglein	N2HDM	2204.05975	$bb + (au au) + \gamma\gamma$	$CDF\ M_W$
Benbrik, Boukidi, Moretti et al.	A2HDM-III	2204.07470	$bb + \gamma\gamma$	LFV

Green: 2HDM(+X), blue: Susy, red: Extra charged fields

Authors	Model	arXiv	Excesses	Comments
TB, Heinemeyer, Weiglein	S2HDM	2303.12018	$bb + (\tau \tau) + \gamma \gamma$	DM
Azevedo, TB, Ferreira	C2HDM	2305.19716	$bb + au au + \gamma \gamma$	
Bonilla, Carcamo, Kovalenko et al.	Left-Right model	2305.11967	$\gamma\gamma$	DM
TB, Heinemeyer, Weiglein	S2HDM	2306.03889	$bb + (au au) + \gamma \gamma$	DM
Escribano, Martín Lozano, Vicente	Scotogenic	2306.03735	$bb + \gamma\gamma$	DM, ν masses
Belyaev, Benbrik, Boukidi et al.	A2HDM	2306.09029	$bb + (au au) + \gamma\gamma$	
Ashanuman, Banik, Coloretti et al.	Y = 0 triplet	2306.15722	$\gamma\gamma$	$CDF\ M_W$
Aguilar-Saavedra, Camara et al.	UN2HDM	2307.03768	$(au au)$, $\gamma\gamma$	
Dutta, Lahiri, Li et al.	2HDMS	2308.05653	$bb + \gamma\gamma$	
Ellwanger, Hugonie	NMSSM	2309.07838	$bb + (\gamma\gamma)$	
Cao, Jia, Lian et al.	gNMSSM	2310.08436	$bb + \gamma\gamma$	DM
Borah, Mahapatra Paul et al.	$2\text{HDM} + U(1)_{L_{\mu}-L_{\tau}}$	2310.11953	$\gamma\gamma$	DM, gm2, CDF
Arcadi, Busoni, Cabo-Almeida et al.	2HDM+s/a	2311.14486	$(bb) + \gamma\gamma + (\tau\tau)$	
Ahriche	GM	2312.10484	$bb + \gamma\gamma + (\tau\tau)$	
Coloretti, Crivellin, Mellado	2HDM+S+triplet	2312.17314	$\gamma\gamma$	h_{151}, h_{400}
Cao, Lian	gNMSSM	2402.15847	$bb + \gamma\gamma$	DM, gm2
Kalinowski, Kotlarski	MRSSM	2403.08720	$bb + \gamma\gamma$	DM

Green: 2HDM(+X), blue: Susy, red: Extra charged fields

Model	arXiv	Excesses	Comments
NMSSM	2403.16884	$bb + \gamma\gamma$	DM, gm2
NMSSM	2404.19338	$bb + \gamma\gamma$	DM, $\chi^0\chi^\pm$ excess
A2HDM	2405.02899	$bb + \gamma\gamma + \tau\tau$	$h_{95} + A_{95}$
gauged 2HDM	2405.03127	$bb + (\gamma\gamma)$	$h_{125} \rightarrow Zy \text{excess}$
NMSSM	2406.10969	$bb + \gamma\gamma$	DM
2HDM+S	2408.03705	$bb + \gamma\gamma$	BAU
	Model NMSSM NMSSM A2HDM gauged 2HDM NMSSM 2HDM+S	Model arXiv NMSSM 2403.16884 NMSSM 2404.19338 A2HDM 2405.02899 gauged 2HDM 2405.03127 NMSSM 2406.10969 2HDM+S 2408.03705	$\begin{array}{c c c c c c } \hline Model & arXiv & Excesses \\ \hline NMSSM & 2403.16884 & bb + \gamma\gamma \\ NMSSM & 2404.19338 & bb + \gamma\gamma \\ \hline A2HDM & 2405.02899 & bb + \gamma\gamma + \tau\tau \\ gauged 2HDM & 2405.03127 & bb + (\gamma\gamma) \\ NMSSM & 2406.10969 & bb + \gamma\gamma \\ 2HDM+S & 2408.03705 & bb + \gamma\gamma \\ \hline \end{array}$

Green: 2HDM(+X), blue: Susy, red: Extra charged fields

Two generic lessons:

- 1. The 95 GeV Higgs boson is not alone
- 2. Many possible but no direct relation to new-physics questions

Could come from an SU(2) doublet or triplet, a DM portal, a Majoron, a right-handed sneutrino, ...

Classes of models

1. h_{95} is a component of an SU(2) multiplet

- 2HDM

- C2HDM
- A2HDM

- . . .

- Y = 0 triplet
- Georgi-Machacek model

2. h_{95} is component of a singlet field (mixing with h_{125})

- N2HDM

- S2HDM

- NMSSM

- $\mu\nu$ SSM

- . . .

- Left-right model

3. $h_{95} \rightarrow \gamma \gamma$ requires extra charged/coloured fields

- U(1) $_{L_{\mu}-L_{\tau}}$ model
- $U(1)_{Y'}$ model
- UN2HDM
- Scotogenic model
- Georgi-Machacek model (?)

- . . .

Classification is not perfect (exclusive), but each group represents the three main features of h_{95} to get the required couplings in the various models

HiggsDays in Santander

Classes of models

1. h_{95} is a component of an SU(2) multiplet

- 2HDM

- C2HDM
- A2HDM

- . . .

- $\boldsymbol{Y}=\boldsymbol{0}$ triplet
- Georgi-Machacek model

2. h_{95} is component of a singlet field (mixing with h_{125})

- N2HDM
- S2HDM
- NMSSM
- $\mu\nu$ SSM
- Left-right model

3. $h_{95} \rightarrow \gamma \gamma$ requires extra charged/coloured fields

- U(1) $_{L_{\mu}-L_{\tau}}$ model
- U $(1)_{Y'}$ model
- UN2HDM
- Scotogenic model
- Georgi-Machacek model (?)

- . . .

A95 in the 2HDM Type I

2HDM interpretations had been discarded due to limited di-photon signal rates

With the updated experimental results the picture has changed

 $A_{95} \approx A$ dominantly CP-odd state \rightarrow LEP excess requires CP violation

Can also describe the di-tau excess, but tensions with indirect constraints from flavour physics and electron EDMs

[D. Azevedo, TB, P. Ferreira, 2305.19716]

ScannerS + HiggsTools

HiggsDays in Santander

A95 in the 2HDM Type I

2HDM interpretations had been discarded due to limited di-photon signal rates

With the updated experimental results the picture has changed

 $A_{95} \approx A$ dominantly CP-odd state \rightarrow LEP excess requires CP violation

Can also describe the di-tau excess, but tensions with indirect constraints from flavour physics and electron EDMs

[D. Azevedo, TB, P. Ferreira, 2305.19716]

ScannerS + HiggsTools

Y = 0 Triplet

 Δ SM violates custodial symmetry at tree level $\rightarrow M_W^2 = \frac{g_2^2}{4} (v^2 + 4v_\Lambda^2)$ (CDF anomaly)

[Ashanuman, Banik, Coloretti, Crivellin, Mellado, Mulaudzi, 2306.15722]

Y = 0 Triplet

 Δ SM violates custodial symmetry at tree level $\rightarrow M_W^2 = \frac{g_2^2}{4}(v^2 + 4v_\Delta^2)$ (CDF anomaly)

[Ashanuman, Banik, Coloretti, Crivellin, Mellado, Mulaudzi, 2306.15722]

Requires different production mode. Compatible with experimental assumptions?

HiggsDays in Santander

- Y = 0 triplet

Classes of models

SU(2) multiplet

1. h_{95} is a component of an 2. h_{95} is component of a singlet field (mixing with h_{125})

- N2HDM
- S2HDM
- NMSSM
- $\mu\nu$ SSM

- . . .

- Left-right model

Thomas Biekötter

HiggsDays in Santander

31 / 39

3. $h_{95} \rightarrow \gamma \gamma$ requires extra

- $U(1)_{Lu} L_{\pi}$ model

- Georgi-Machacek model (?)

The S2HDM

Can we have DM annihilation without scattering?

$$\mathcal{L} = (\partial_{\mu}S)^{*} \partial^{\mu}S - V(\phi_{i}, S)|_{\mathrm{U}(1)} - V(S)|_{\mathcal{U}(1)-\mathrm{soft}}$$
$$S = \frac{1}{\sqrt{2}} (v_{S} + \phi_{S}) e^{i\chi/v_{S}} \Rightarrow \mathcal{L}_{\chi\chi\phi_{S}} = \frac{1}{2v_{s}} \left(\partial^{2}\phi_{S}\right) \chi\chi - \frac{\phi_{S}}{v_{s}}\chi \left(\partial^{2} + m_{\chi}^{2}\right) \chi$$

"Pseudo-Namub-Goldstone Dark Matter" [Barger et al., 0811.0393]

h95 in the S2HDM

Fermi galactic center excess [TB, M. O. Olea Romacho, 2108.10864]

With $\mu_{\gamma\gamma}\sim 0.3$ no preference anymore for Yukawa type II over Type IV

[TB, M. O. Olea Romacho, 2108.10864], [TB, S. Heinemeyer, G. Weiglein, 2303.12018, 2306.03889]

HiggsDays in Santander

h95 in the S2HDM Type IV

HiggsDays in Santander

Supersymmetry: NMSSM

The presence of h95 would be a clear indication of beyond-the-MSSM physics

 $h_{95} pprox h_S$ mixed with h_{125} to describe $\mu_{\gamma\gamma}$ and μ_{bb}

HiggsDays in Santander

Singlino LSP ($\Omega h^2 = \Omega h^2 |_{\text{Planck}}$)

Supersymmetry: NMSSM

Alignment without decoupling limit

[Carena, Haber, Low, Shah, Wagner, 1510.09137]

Gives $\mu_{\gamma\gamma}$, a SM-like h_{125} and many additional LHC pheno:

- Stops below $\approx 1.5~{\rm TeV}$
- Higgsinos at $\approx 200~{\rm GeV}$
- Singlino below 125 GeV
- H, A and H^\pm below $\approx 1~\text{TeV}$

Prediction: CMS $\tau^+\tau^-$ goes away and LEP $b\bar{b}$ was fluctuation

[Barbieri, Buttazzo, Kannike, Sala, Tesi, 1307.4937] Thomas Biekötter

HiggsDays in Santander

36 / 39

Classes of models

1. h_{95} is a component of an SU(2) multiplet

- 2HDM
- C2HDM
- A2HDM
- Y = 0 triplet
- Georgi-Machacek model

2. h_{95} is component of a singlet field (mixing with h_{125})

HiggsDays in Santander

- N2HDN
- S2HDM
- NMSSM
- $\mu\nu$ SSM
- Left-right model

3. $h_{95}
ightarrow \gamma \gamma$ requires extra charged/coloured fields

- U(1) $_{L_{\mu}-L_{\tau}}$ model
- $U(1)_{Y'}$ model
- UN2HDM
- Scotogenic model
- Georgi-Machacek model (?)

- . . .

pNG with extra coloured scalar

HiggsDays in Santander

Georgi-Machacek model

 $SM + Triplet_{Y=0} + Triplet_{Y=1}$ with SO(4) $\rho^{\text{tree}} = 1$ [Georgi and Machacek, Chanowitz and Golden] Including $H^{\pm\pm}$ -loop Not including $H^{\pm\pm}$ -loop 0.40 0.40 $\chi^2 < \chi^2_{em}$ $\chi^2 < \chi^2_{ev}$ 0.35 0.35 $\chi^2 < \chi^2_{EM}$, $\Delta \chi^2_{125} < 6.18$ $\chi^2 < \chi^2_{EM}$ $\Delta \chi^2_{125} < 6.18$ Best-fit Best-fit 0.30 0.30 0.25 0.25 $\mu_{\gamma\gamma, LHC}^{H_1}$ $\tilde{u}^{H_1}_{\gamma\gamma, LHC}$ 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0.00 50 100 150 200 250 50 100 150 200 250 300 300 m_H, (GeV) *т*_н, (GeV) [Chen, Chiang, Heinemeyer, Weiglein, 2312.13239]

Smoking-gun would be $pp \rightarrow H_5^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ with $m_{H_5^{\pm\pm}} \lesssim 200$ GeV Size of modifications of $h_{125} \rightarrow \gamma\gamma$?

HiggsDays in Santander

Path forward at the LHC

1. Direct searches for h95

- ATLAS Run 2: $\phi
ightarrow au^+ au^-$

- CMS/ATLAS Run 3: $\phi
 ightarrow \gamma \gamma$
- $pp \rightarrow t \bar{t} \phi \rightarrow t \bar{t} b \bar{b}$ feasable?

2. Indirectly from h125 - $h_{125} \rightarrow VV^*$ (singlet mixing) - $h_{125} \rightarrow \gamma\gamma$ (additional charged fields: $H^{\pm}, H^{\pm\pm}, \dots$) 3. Other searches

- $H^{\pm}
 ightarrow tb/ au
 u$ for $m_{H^{\pm}} \sim m_t$
- $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm*} \lesssim 200 {\rm ~GeV}$
- Resonant $X
 ightarrow h_{95} Y$ with with $Y = V/h_{95}/h_{125}$

Other ways to probe h95 with already existing data?

Thanks!

LEP: $e^+e^- \rightarrow Zh \rightarrow Zbb$

[LEP, hep-ex/0306033]

LEP: $e^+e^- \rightarrow Zh \rightarrow Zb\overline{b}$

[LEP, hep-ex/0306033]

LEP: $e^+e^- \rightarrow Zh \rightarrow Zb\overline{b}$

[LEP, hep-ex/0306033]

CMS: low-mass $\gamma\gamma$

The CMS diphoton excess over time

[CMS-HIG-17-013, CMS-HIG-20-002]

CMS: low-mass $\gamma\gamma$

[CMS-HIG-20-002]

CMS: $pp \to X \to YX \to \gamma\gamma b\overline{b}$

3.8/2.8 local/global excess: $\sigma(pp \to X_{650} \to H_{125}Y_{90} \to \gamma\gamma b\bar{b}) \sim 0.35$ fb

Excluded this year by ATLAS: $\sigma_{95\% \ C.L.}(pp \rightarrow X_{650} \rightarrow H_{125}Y_{90} \rightarrow \gamma\gamma b\bar{b}) < 0.20$ fb ATLAS should have seen a 2.7σ excess [ATLAS, 2404.12915]

Thomas Biekötter

HiggsDays in Santander

CMS: $pp \to X \to HY \to \tau^+ \tau^- \gamma \gamma$

2.3 local excess: $\sigma(pp \to X_{650} \to H_{125}Y_{95} \to \tau^+\tau^-\gamma\gamma)$

[CMS-PAS-HIG-22-012]

$\textbf{h95} \rightarrow \textbf{WW}^*$

Hints for $h_{95} \rightarrow WW^*$ from recasting of $h_{125} \rightarrow WW^*$ measurements were reported

[Coloretti, Crivellin, Bhattacharya, Mellado, 2302.07276]

C2HDM-I: Hide and seek

[D. Azevedo, TB, P. Ferreira, 2305.19716]

C2HDM-I: Indirect constraints

CP violation

Flavour physics

[D. Azevedo, TB, P. Ferreira, 2305.19716]

h95 in the S2HDM: dark matter

What about dark matter?

Correct relic abundance via "vanilla" freeze-out DM annihilation: $\chi\chi\to h_{95}/h_{125}\to b\bar{b}$

DM mass: $m_{\chi} > 62.5~{\rm GeV}$ to describe excesses \rightarrow no ${\rm BR}(h_{125} \rightarrow {\rm inv})$

Today's annihilation cross section and DM mass in the right ballpark for the galactic-center excess.

[TB, O. Olea Romacho, 2108.10864]